合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 酸化壓裂用助排劑表面張力較低,可有效改善巖心的潤濕性
> 為什么不能用清水洗碗?
> 便攜式自動表面張力儀主要產(chǎn)品特征
> 激光釬涂金剛石的涂層形成與表面張力有何關(guān)系(一)
> 一文了解帶銹涂裝涂料類型、作用及用途
> 納米TiO_2表面性質(zhì)和表面活性劑對納米流體物性的影響
> W/O型Pickering乳液油水間的界面張力對乳液穩(wěn)定性的影響
> BOPP薄膜制備,印刷表層的表面張力多少合適
> 不同溫壓條件、水環(huán)境對CO2溶解度及界面張力的影響規(guī)律
> 醫(yī)學(xué)檢測用涂片裝置新設(shè)計可降低液體因表面張力形成的回彈濺起
推薦新聞Info
-
> 飽和腰果酚聚氧乙烯醚磺酸鹽動態(tài)界面張力測定【實驗步驟及結(jié)果】
> 最大拉桿法的基本原理、實驗步驟、影響因素及其在測定溶液表面張力中的應(yīng)用
> 麥芽糖醇脂肪酸酯水溶液合成、反應(yīng)條件及表面張力測定——結(jié)果與分析、結(jié)論
> 麥芽糖醇脂肪酸酯水溶液合成、反應(yīng)條件及表面張力測定——摘要、材料與方法
> 多孔陶瓷的造孔方法|發(fā)泡劑摻量對多孔陶瓷材料性能的影響
> 棕櫚酸二甘醇酰胺無堿條件下降低大慶原油/地層水界面張力——結(jié)果和討論、結(jié)論
> 棕櫚酸二甘醇酰胺無堿條件下降低大慶原油/地層水界面張力——摘要、材料與方法
> 考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型構(gòu)建(二)
> 考慮界面張力、液滴尺寸和液滴變形影響的攜液臨界模型構(gòu)建(一)
> 活性低聚表面活性劑促進(jìn)水滴在疏水表面的鋪展
基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴(kuò)張流變性質(zhì)(三)
來源: 《天津工業(yè)大學(xué)學(xué)報》 瀏覽 92 次 發(fā)布時間:2024-12-09
2.1.3濃度對ω0的影響
表面活性劑濃度對表面和界面擴(kuò)張彈性全頻率譜上ω0的影響如圖4所示。擴(kuò)張彈性數(shù)值達(dá)到平臺,意味著擾動過程中組成界面膜的分子不與體相間發(fā)生交換,同時,界面上的分子也不能通過取向變化耗散能量。也就是說,ω0大于界面及其附近所有弛豫過程的特征頻率。
由圖4可以看出,對于C8C10和C10C8,無論是表面還是界面,ω0均隨濃度增大而升高。隨表面活性劑濃度升高,擴(kuò)散-交換過程加快;同時,界面吸附分子數(shù)目增多,分子取向變化更容易發(fā)生。上述因素均造成體系中各弛豫過程特征頻率升高,因此,ω0也隨之升高。
圖4表面活性劑濃度對表面和界面擴(kuò)張彈性曲線上ω0的影響
與ω1的變化規(guī)律類似,對于表面吸附膜,C10C8的ω0在整個實驗濃度范圍內(nèi)均明顯低于C8C10。這是由于羥基鄰位長鏈烷基之間的強(qiáng)相互作用造成的。而對于界面吸附膜,由于癸烷分子插入界面吸附膜中,破壞了分子間相互作用,C8C10和C10C8的ω0差別變小。與ω1不同的是,ω0不僅與擴(kuò)散-交換過程有關(guān),也與單分子取向變化等更快的弛豫過程相關(guān),因此,界面上ω0的變化趨勢與ω1不同。
2.1.4濃度對ε0的影響
表面活性劑濃度對表面和界面吸附膜極限擴(kuò)張彈性ε0的影響如圖5所示。
由圖5可以看出,對于表面吸附膜,ε0隨濃度升高通過一個極大值。在前期通過周期振蕩法進(jìn)行的擴(kuò)張流變研究中發(fā)現(xiàn),隨著表面吸附分子數(shù)目增多,羥基鄰位的長鏈烷基的取向從沿表面伸展逐漸向伸入空氣轉(zhuǎn)變。這種分子取向的變化削弱了表面吸附膜的結(jié)構(gòu),造成ε0的降低。C10C8分子間的相互作用更強(qiáng),發(fā)生轉(zhuǎn)折的濃度更高,能夠達(dá)到的ε0數(shù)值更高(178 mN/m)。而對于界面吸附膜,結(jié)構(gòu)被削弱,主要由單分子的行為控制,結(jié)構(gòu)的相似性導(dǎo)致C8C10和C10C8的ε0數(shù)值接近。
圖5表面活性劑濃度對表面和界面極限擴(kuò)張彈性ε0的影響
2.2吸附膜的界面擴(kuò)張黏性
黏性是表征界面吸附膜特性的另一重要參數(shù),直接與弛豫過程的特征頻率相關(guān)。對于吸附膜,至少存在擴(kuò)散-交換的弛豫過程,必然表現(xiàn)為一定的黏性。黏性對于界面膜的強(qiáng)度也有很大貢獻(xiàn),具有一定黏性的界面膜有利于泡沫或者乳狀液的穩(wěn)定。C8C10溶液的表面和界面擴(kuò)張黏性的全頻率譜如圖6所示。
圖6 C8C10溶液的表面和界面擴(kuò)張黏性的全頻率譜
由圖6可以看出,在實驗濃度范圍內(nèi),擴(kuò)張黏性均隨頻率升高通過一個極大值,極大值對應(yīng)的頻率就是該弛豫過程的特征頻率。由于只通過一個極大值,說明表面和界面的性質(zhì)由一個主要弛豫過程控制。
界面擴(kuò)張黏性全頻率譜的特征可以用擴(kuò)張黏性的最大值εi0及其對應(yīng)頻率ωi來表征。表面活性劑濃度對表面和界面擴(kuò)張黏性最大值對應(yīng)頻率的影響如圖7所示。
圖7表面活性劑濃度對表面和界面擴(kuò)張黏性最大值對應(yīng)頻率的影響
由圖7可以看出,對于C8C10和C10C8,無論是表面還是界面,ωi均隨濃度增大而升高。這是兩方面因素共同影響造成的:①主控的弛豫過程從慢過程變?yōu)榭爝^程;②主控的弛豫過程的特征頻率變快。
對比圖4和圖7可以看出,ωi隨濃度的變化趨勢與ω0十分相似:對于表面吸附膜,C10C8的ωi在整個實驗濃度范圍內(nèi)均明顯低于C8C10。這是由于羥基鄰位長鏈烷基之間存在纏繞,其取向變化產(chǎn)生界面大量分子重排的慢過程;鄰位烷基鏈越長,慢過程的貢獻(xiàn)越大。而對于界面吸附膜,由于癸烷分子插入界面吸附膜中,擴(kuò)散-交換過程主導(dǎo)分子的界面行為,C8C10和C10C8具有相似的流體動力學(xué)半徑,ωi隨濃度的變化趨勢變得相似。
表面活性劑濃度對表面和界面擴(kuò)張黏性最大值的影響如圖8所示。
對比圖5和圖8可以看出,εi0隨濃度的變化趨勢與ε0十分相似:對于表面吸附膜,εi0隨濃度升高通過一個極大值,反映了羥基鄰位的長鏈烷基取向變化造成的表面吸附膜結(jié)構(gòu)的削弱。C10C8的羥基鄰位烷基鏈更長,界面分子間的相互作用更強(qiáng),發(fā)生轉(zhuǎn)折的濃度更高,能夠達(dá)到的εi0數(shù)值更高(62 mN/m)。而對于界面吸附膜,膜性質(zhì)主要由單分子的行為控制,C8C10和C10C8的結(jié)構(gòu)相似,因此,εi0數(shù)值接近。
圖8表面活性劑濃度對表面和界面擴(kuò)張黏性最大值的影響
3結(jié)論
本文利用界面張力弛豫技術(shù),研究了不同鏈長羥基取代烷基苯磺酸鹽C10C8和C8C10在表面和正癸烷-水界面的吸附行為,得到以下結(jié)論:
(1)由于苯環(huán)上磺酸基和羥基均與水相作用,使得羥基鄰位的長鏈烷基傾向于沿界面伸展,表現(xiàn)出較強(qiáng)的分子間相互作用;羥基對位的長鏈烷基則傾向于伸入空氣或油相。
(2)對于表面吸附膜,界面分子重排的膜內(nèi)過程控制膜性質(zhì)。羥基鄰位烷基鏈越長,分子間相互作用越強(qiáng),表面上主控的弛豫過程的特征頻率越低。C10C8表現(xiàn)出更高的極限擴(kuò)張彈性和擴(kuò)張黏性最大值。
(3)對于界面吸附膜,癸烷分子插入界面吸附膜中,破壞了分子間強(qiáng)相互作用,擴(kuò)散-交換過程控制膜性質(zhì)。C10C8和C8C10具有相似的流體動力學(xué)半徑,表現(xiàn)出相近的極限擴(kuò)張彈性和擴(kuò)張黏性最大值。